skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rojas, E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 20, 2025
  2. Abstract The numerical forecast methods used to predict ionospheric convective plasma instabilities associated with Equatorial Spread‐F(ESF) have limited accuracy and are often computationally expensive. We test whether it is possible to bypass first‐principle numeric simulations and forecast irregularities using machine learning models. The data are obtained from the incoherent scatter radar at the Jicamarca Radio Observatory located in Lima, Peru. Our models map vertical plasma drifts, time, and solar activity to the occurrence and location of clusters of echoes telltale of ionospheric irregularities. Our results show that these models are capable of identifying the predictive power of the tested inputs, obtaining accuracies around 75%. 
    more » « less
  3. Abstract Artificial periodic inhomogeneity or API experiments were conducted at the HAARP facility in Gakona, Alaska, in October 2022. The experiments concentrated on measuring ionospheric irregularities induced in theE‐region. The irregularities exhibited characteristics regarding their occurrence altitudes, rise and fall times, and Doppler shifts comparable to results from experiments conducted previously at HAARP and elsewhere. The irregularities also occurred in discrete altitude bands. Seeking to quantify these results, we constructed a simple, one‐dimensional fluid model which includes the effects of HF wave heating (direct and indirect) together with electron and ion cooling and thermal conduction, ion production, loss, and diffusion. Critically, the model includes a potential solver and can represent the ambipolar electric field. The model produced API irregularities in three distinct altitude bands which decayed according to the ambipolar diffusion rate. 
    more » « less
  4. Abstract The main science aim of the BlackGEM array is to detect optical counterparts to gravitational wave mergers. Additionally, the array will perform a set of synoptic surveys to detect Local Universe transients and short timescale variability in stars and binaries, as well as a six-filter all-sky survey down to ∼22nd mag. The BlackGEM Phase-I array consists of three optical wide-field unit telescopes. Each unit uses anf/5.5 modified Dall-Kirkham (Harmer-Wynne) design with a triplet corrector lens, and a 65 cm primary mirror, coupled with a 110Mpix CCD detector, that provides an instantaneous field-of-view of 2.7 square degrees, sampled at 0.″564 pixel−1. The total field-of-view for the array is 8.2 square degrees. Each telescope is equipped with a six-slot filter wheel containing an optimised Sloan set (BG-u, BG-g, BG-r, BG-i, BG-z) and a wider-band 440–720 nm (BG-q) filter. Each unit telescope is independent from the others. Cloud-based data processing is done in real time, and includes a transient-detection routine as well as a full-source optimal-photometry module. BlackGEM has been installed at the ESO La Silla observatory as of 2019 October. After a prolonged COVID-19 hiatus, science operations started on 2023 April 1 and will run for five years. Aside from its core scientific program, BlackGEM will give rise to a multitude of additional science cases in multi-colour time-domain astronomy, to the benefit of a variety of topics in astrophysics, such as infant supernovae, luminous red novae, asteroseismology of post-main-sequence objects, (ultracompact) binary stars, and the relation between gravitational wave counterparts and other classes of transients. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. Abstract We investigate the mechanism underlying lower hybrid waves associated with high altitude echoes recently detected in the post‐sunset equatorial topside ionosphere and inner plasmasphere by the Jicamarca VHF radar. These waves are visible as prominent sidebands in the echo Doppler spectra. New experimental results and newly processed incoherent scatter radar (ISR) datasets are presented that provide clues as to the conditions in which the echoes and associated waves occur. Numerical simulations are presented which demonstrate the feasibility of an inverse energy cascade coupled with a short wavelength instability, that is, the lower hybrid drift instability, in explaining the waves. An inverse cascade is required for short wavelength lower hybrid waves to extend to the 3 m wavelengths measured by the Jicamarca radar. The simulations were able to reproduce some features of the measurements including the lower hybrid sidebands at 3 m wavelengths, asymmetry in the sidebands, and the damping effect of higher densities and lower altitudes. 
    more » « less
  6. Abstract Data from a network of high‐frequency (HF) beacons deployed in Peru are used to estimate the regional ionospheric electron density in a volume. Pseudorange, accumulated carrier phase, and signal power measurements for each of the 36 ray paths provided by the network at a 1 min cadence are incorporated in the estimates. Additional data from the Jicamarca incoherent scatter radar, the Jicamarca sounder, and GPS receivers can also be incorporated. The electron density model is estimated as the solution to a global optimization problem that uses ray tracing in the forward model. The electron density is parametrized in terms of B‐splines in the horizontal direction and generalized Chapman functions or related functions in the vertical. Variational sensitivity analysis has been added to the method to allow for the utilization of the signal power observable which gives additional information about the morphology of the bottomside F region as well as absorption including absorption in the D and E regions. The goal of the effort is to provide contextual information for improving numerical forecasts of plasma interchange instabilities in the postsunset F region ionosphere associated with equatorial spread F (ESF). Data from two ESF campaigns are presented. In one experiment, the HF data revealed the presence of a large‐scale bottomside deformation that seems to have led to instability under otherwise inauspicious conditions. In another experiment, gradual variations in HF signal power were found to be related to the varying shape of the bottomside F layer. 
    more » « less